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Abstract

Let 0 = (01,...,0mn) € R™ k = (K1,...,Kn) € R™ be two tuples of real
numbers each linearly independent over QQ, and T the transcendence degree
of the field generated by {exp(6;x;)|i =1,...,m, j =1,...,n} over Q. The
estimate T > mm—fn — 1 has been conjectured for some time but could only
be proved under additional hypotheses for § and . This paper proves a
weaker estimate for 1" while also reducing the strong estimate to a prominent
conjecture on intersections of subvarieties of split tori with subgroups.
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1 Introduction

Let I be a natural number, G the algebraic group G = (G,,)}, and X C G an
irreducible subvariety defined over an algebraic extension of Q that is contained
in no proper algebraic subgroup of G. With ¢ = dim X, an irreducible subvariety
Y C X of dimension s is called special if Y is contained in an algebraic subgroup
H C G of codimension t 4+ 1 — s.



1.1 Conjecture In the situation above, there is a proper Zariski closed subset
X C X that contains all special subvarieties.

This conjecture is proved for ¢ = 1 ([Mau|, Théoreme 1.2).

For a finite set © = {©4,...,0,} C C, denote the transcendence degree of Q(O)
over Q by T(O).

A tuple of complex numbers (61, ...,0,,) € C™ will be called regular if the point
(exp(0y),...,exp(0,,)) € G(C) is not contained in any proper algebraic subgroup,
which is equivalent to 64, ..., 60,,, i being linearly independent over Q.

If 64,...,0,, € R are linearly independent over Q, then (6, ...,0,,) is regular. If
01,...,0, € C are linearly independent over Q but (1, ...,0,,) is not regular, then
there is a subset {6;,,...,0; ,} C {01,...,0, € C} of m — 1 numbers such that
0iyy...,0; ., mi are linearly independent over Q and

T(exp(0:,),...,exp(0;, ) =T (exp(0y),...,exp(0n))-

1.2 Definition Letn,m,v,p e Nyv <n,u<m,n>1, and = (04,...,60,,) € C"
and kK = (K1,...,k,) € C" be regular.

1. The m-tuple @ = {0y,...,0,,} is called (u,n)-generic, if there is a nonsingular
m X m-matriz A with entries in Q such that for every sufficiently big D € N,
there are 1 < iy < --- <, < m such that for every nonzero l = (l,...,l,) €
7* with |l| < D, the inequality

log | exp((l1A0);, + -+ - +1,(A0);,) — 1| > —=D"

holds, where the implied constant depends only on 6 and A.

The m-tuple 0 is called (p,n)-special if it is not (u,n)-generic, i.e. if for ev-
ery ¢ > 0 and every nonsingular A € M,y,«m(Q), there are infinitely many
D € N such that for every {ir,...,1,} C {1,...,m} there is a nonzero
l=(lh,...,1,) € Z" with ||| < D and

|exp(l1(Af);, + - 1,(A0);,) — 1| < —eD".

Denote by gen(0,n) the biggest number v € N such that 0 is (v,n)-generic.

2. The bituple ((01,...,0mn), (K1,...,K,)) is called (u,v,n)-generic if there are
reqular matrices A € Myxm(Q), B € Mpxn(Q) and a Dy € N such that for
all L,R > D, there are subsets {i1,...,1,} C {1,...,m}, {j1,....J0} C
{1,...,n} such that for all nonzerol = (ly,...,1,) € Z",r = (r1,...,1,) € Z¥
with |l| < L and |r| < r, the inequality

log | exp((1(A0)i, + -+ - 1,(A0)s, ) (1 (BR)jy + - -1(BR);, ) = 1] > —L" = R"
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1.3

holds, where the implied constant depends only on 0,k, A, and B.

The bituple ((01,...,0n), (K1,-..,Kn)) is called (u,v,n)-special if it is not

(u, v,m)-generic, i.e. if for every ¢ > 0 and every A € M5, (Q), B € M,,»,(Q)
with nonzero determinant, there are arbitrarily big L, R € N such that for
every {i1,...,4,} C {1,...,n} there are nonzero | = (l1,...,l,) € Z!,r =
(r1,...,m,) € Z* with |I| < L,|r| < R, and

log | exp((11(A0);, + -~ 1, (A0),, ) (r(BR) +- - 1,(Bk),,)) — 1] < (L7 + RY)

Conjecture For m,n € N, let 0 = (0y,...,0,) € C™ and k = (K1,...,k,) EE

C" be regqular Q.

1.

1.4

1.5

If gen(0,t) < m —t for some t € N, then T (exp(6y),...,exp(0)) > t, and if
gen(k,t) <n —t for somet € N, then T(exp(k1),...,exp(k,)) > t.

If either gen(6,t) < m, and n > t, or gen(k,t) < n, and m >t for some
t € N, then

T({exp(bik))|i=1,...,m, j=1,...,n}) >t.
If0.,...,0,, K1,..., Ky are all real, then

T({exp(Oik;)|i=1,....m, j=1,...,n}) >

for every e > 0.
Theorem I Conjecture 1.1 implies conjecture 1.3

Theorem II For m,n € N, let § = (0y,...,0,,) € Clm and k1,...,k, € C"

be reqular.

1.

If gen(6,t) < m for some t € N, then T(exp(61),...,exp(6,)) > t.

Likewise, if gen(k,t) < m for somet € N, then T(exp(/il) oy exp(ky)) >
t.

For 0y,...,0,,Kk1,...,Kkn all real, t,m,n € N, if there exist u,v € N with
uw<m, and v < n, such that
J17% m—1 n—_t

>t < d <
p+v o 'u_max(t—l,l)7 o V_max(t—l,l)’

then
T({exp(Oir;)|i=1,....m, j=1,...,n}) >t

The above three inequalities are fulfilled e. g. fort > 2 arbitrary, p = 2t+1,v =
2t,m > 2t> — 1, and n > 2t — t.



1.6 Corollary
If6y,...,0,, € R as well as kq,...,k, € R are linearly independent over QQ, then

T({exp(Oik;)|i=1,...,m, j=1,...,n}) > [\/mm(mz,n) +1

If ( € R is a transcendental number, and m,n € Z, then

DN —

T({exp(¢™), exp(¢™™"), ..., exp(¢"™™)}) =

-~ 3

PRrROOF 1. Assume min(m,n) = n. In Theorem II.2 take t = [,/”T“}, p=rv=
2t — 1. An easy calculation shows that m >n > (v —1)(t — 1) — 1, and i >t
and the estimate T'({exp(O;x;)|i =1,....,m, j=1,...,n}) >t = [« / ”T“} follows.

n—m n—m

2. Tn part one, take 6 = (¢1%], ... ¢ =1"2"]) and x = (=181, .. ¢[*2")).

Throughout the whole paper, the norm of a polynomial with coefficients in Z will

.....

To prove estimates for transcendence degrees, two special cases of the Philippon
criterion will be needed.

1.7 Proposition

Let © = (04,...,0,) € C", and ¢1,c2,n > 0,¢c3 € R, and denote by |z, 2| the
distance of the point zy, zo in C™. There is a constant C' > 0, only depending
onn,O,cy,cy and n such that

1. if for every sufficiently big natural number D, there are polynomials f1, ..., fm
i n variables, such that

degfiSCID7 10g|fi|§02D7 10g|f1(®177®ﬂ)|§_0Dn7 Z.:]-?"wma

and for every common zero z = (21,...,2n) of f1,..., fm, we have log|z,©] >

—3CD". Then, T(©) >n— 1.

2. if for infinitely many natural numbers D, there are polynomials f1,..., fm in
n variables, such that

deg fi <D, log|fi| < oD, log|fi(©1,...,0,)| < -CD", i=1,...,m,

and for every common zero z = (z1,...,2,) of f1,..., fm, we have log |z, O >
cs. Then, T(©) >n — 1.

ProoF This follows from [Ph], Théoreme 2.11.
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2 Generic points

2.1 Lemma
1. For all 6,n, we have 1 < gen(6,n) < n.

2. For a nonsingular A € My,«m(Q), the tuple (64, . ..,0.) is (i, n)-regular if and
only (Aby, ..., Ab,,) is.

3. For a nonzero a € R the tuple (01,...,0,,) € R™ is (u,n)-reqular if and only
(aby,...,aby,) is.

4. For nonsingular A € Myxm(Q), B € M, (Q), the bituple (0, k) is (p,v,n)-
reqular if and only (A0, Bk) is.

5. For A € Mgy,(Q) a matriz of rank s,

gen(A0,t — 1) < gen(0,t — 1) < gen(0,t).

6. For 01,...,0m,Kk1,....,k, € R, if 0 = (01,...,0,,) is (u,n)-reqular and k =
(K1, ..., Kn) is (v,n)-regular, then the bituple (0, k) is (u,v,n)-regular.

Proor 1. Obvious.

2,.3.,4. These claims hold since the relation > remains true if one side is changed
by a fixed multiplicative constant.

5. Let p = gen(A6,t—1). Then for every sufficiently big D and every I = (iy,...,1,)
with 1 <4y <--- <i, <sandevery |l = (ly,...,[,) with || < D, the inequality

log |l1(A0);, + -+ 1,(A0);, — 1| > —D".
holds. If A is extended to an (m x m) matrix A’ of rank n, then

log | (A'0);, + -+ + 1, (A'0);, — 1] > -D',
for all I = (iy,...,4,) with 1 <43 < --- <4, < s and all [, since the left hand
side is unchanged because of i, < s. Hence, gen(Af,t — 1) = pu < gen(A’'0,t — 1).

Further, gen(A’0,t — 1) = gen(6,t — 1) by part 2 of the Lemma, and the inequality
gen(0,t — 1) < gen(6,t) trivially holds.

6. Since exp : R — R* is a bijection with exp(0) = exp’(0) = 1, the relations
log |l exp((A0);, + -+ +1,(A);,) — 1| > —L",
log |y exp((Bk)j, + - -+ + lu(Bk);,) — 1| > —R"
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are equivalent to
log |l1(A¢9)“ <4 l,u(A‘g)zu‘ > —Ln,

+
log [li(Bk)j, + -+ + Lu(Bk)j;, | > —R",
which in turn implies
log |((1:(A0)i, + -+ 1.(A0);, ) (r(Br)j, + -+ 1(Bk);, )| > —L" — R",
which again is equivalent to

log [ exp((11(A0)i, + - 1u(A0);, ) (r1(Br)j, + - -1y(Bk);,)) — 1| > —L" = R".

2.2 Proposition If 0 = (04,...,0,,) as well as k = (K1,...,k,) are tuples of
linearly independent over Q, and for some n > 1, the inequality

gen((6),n) gen((x),n)
gen((0),n) + gen((x),n)

holds, then T ({exp(6ir;)|i=1,...,n, j=1,....,m})>n—1.

>

For gen(f) = m, and gen(k) = n, this is proved in [LNM 1752], chapter 14.3. The
general case can be proved in exactly the same way; the only thing that has to be
modified is that for every value of the approximation parameter D, one works with
only u, respectively v components of # and k, which may be different components
for every D. The necessary auxiliary polynom for each D is then a polynomial
in only these “active” variables. As this requires notational and some technical
adjustments throughout the whole proof, for the convenience of the reader, I will
give a full generalized proof in the appendix.

3 Special points

Let G =G, and X C G,, an irreducible subvariety defined over a finite extension
of Q, that is contained in no proper subgroup of GG. For M the character module of
G, and N C M a submodule define the subgroup

Hy := ﬂ kery C G,

XEN

and for a subvariety Y C X define Hy as the smallest subgroup of G that contains
Y.

3.1 Definition For s >t =dim X,



1. the variety X is called s-regqular, if for every submodule N C M of rank s,
we have dim((x1,...,xs)(Y)) = t, where x1,...,xs is any basis of N, and
(X1s---5Xs) is the corresponding map G, — G3,.

2. an irreducible subvariety Y C X of dimension d is called s-special if dim Hy <
[ —s+d.

Conjecture 1.1 says that there is a proper Zariski closed subset X C X that contains
all t-special subvarieties of X.

3.2 Theorem If X C Gy, is s-reqular for some s > t = dim X , then there is a
proper Zariski closed subset X C X that contains all s-special subvarieties of X.

PROOF This result is a mainly technical generalization of [Hal, Corollary 3 and can
be found in [Ma].

3.3 Proposition Let © € G(C) be a point that is contained in no proper algebraic
subgroup, and X the algebraic closure of {©} over Q. Suppose that fort € N, some
c1 > 1, an arbitrary ¢ > 0, and a proper Zariski closed subset X C X, there is an
infinite set D C N such that for every D € D there is a submodule Np C M such
that X N Hy, C X, and for some basis X1, ..., X, of Np the inequalities

degy; < 1D, and log|x;(©) —1] < —cD', i=1,...,r

hold. Then, T(©) > t.

PROOF As X(C) does not contain ©, the distance X(C) to © is positive. Denote
this distance by ¢, and let F = {f1, ..., fi} be a set of generators of the ideal of X in
G. By shrinking F, if necessary we may assume deg f; < D, and log | f;| < D for all
i=1,...,1,and every D € D. For D € D let Fp := FU{x1—1,...,x, —1}. Then,
by assumption, X contains the set of common zeros of Fp, hence every common
zero of Fp has distance at least c3 to ©. Also, for f € Fp,

deg f <D, log|f| <D, and log|f(©)| < —cD',

the second inequality because for f a character, |f| < 1, the last inequality because
log |x:(©)] — 1 < —cD*! by assumption for alli = 1,...,r, and |f(©)| =0 for f € F.
By Proposition 1.7.2, T(©) > t — 1, from which 7(©) > t follows, since T'(0) is
integral.



4 Proof of the main Theorems

4.1 Lemma

1. Let 'V be a Q-vector space with basis {vi,...,v,}, and v a natural number
less or equal n. For every subset I C {1,...,n} with |I| = n — v choose a
non-zero vector wy = Ziel a;v;. Then, the subpsace Wy generated by these wy
has dimension at least v + 1. More specifically, there are subsets Iy,...1, 41
such that wr;,j =1,...,v+1 are linearly independent.

2. Let (01,...,0) € R™ (Ky,...,k,) € R™ be two tuples of real numbers, linearly
independent over Q, and G C G = G™" the smallest algebraic subgroup that
contains (exp(6;K;)i<m j<n. Further, with x;;,1 < i < m,1 < j < n the
coordinate functions of G2, and ly, ..., l, € Z, not all zero, let x;,j =1,...,n
be the characters x; = [[12, xi’j, and H = @ﬂ?zlker X;- Then, the codimension
of H in G equals n.

PROOF 1. The wy; are construed inductively: Take wy, as any of the wy. If the

vectors wy,, ..., wy, with j < v +1 are given let W} be the space generated by them.
As v;,i = 1,...,n are a basis of V, their rest classes v; € V/W, generate V/W;.
Hence there are n — j natural numbers [; < n such that v;;,7 =1,...,n — j form a

basis of V/W,. Since n — j > n — v, there is a subset I;4; of {[;|j =1,...,n—j}
with |/| = n — v, such that the restclass w; of w; in V/W; is nonzero. Conseqently
wry, - -, W, Wy, are linearly independent.

2. Let X© be the set of characters of G”" that are one on G and X' the character
module generated by the x;,7 = 1,...,n. If the codimension of H in G were smaller
than n, the intersection of X% with X# would be nonzero. So assume that there
are ry,...,r, € Z, not all zero, such that

n m n B
x=11x =115 € X%
j=1 i=1 j=1

Then, the resstriction of x to G would be 1, hence x((exp(6;x;))i<m j<n) = 1. Since
the 0;, k; are all real, this is equivalent to

Z Z(Z’LQ’L>(T‘7I€]) = 0, hence (Z l201> (Z leij) =0.

i=1 j=1 j=1

which implies that either > 7, ;0; or 377 r;x; = 0, which in turn, because of
the linearily independent conditions, implies that either [y = ... = [,, = 0 or
ry =---=r, = 0 in contradiction to the assumptions.



PROOF OF THEOREM I Let © = (04,...,0,,) = exp(f1,...,0,), and x1,..., 2T,
the coordinate functions of G. For | = (iy,...,l,,) € Z™ denote the corresponding
character [[7, i of G by y;; it has degree 37" | |li| < v/mll].

1. For t = 1, assume that 7(©) = 0, and gen(#, 1) < m—1. Since 4 is (m, 1)-special,
for every ¢ > 0 there are infinitely man D € N and nonzero | = (Iy,...,l,,) with

| < D, hence degy; <+v/mll,

and
|Xl(@> - 1| = |Xl(@17 e 7®m) - 1‘ S eXp(_CD)'

Since 6 is regular, we also have |x;(©) — 1| > 0, and since ©; is algebraic for every
1 =1,...,m, if ¢ is sufficiently big, this contradicts the Liouville inequality.

For ¢t > 2, let X be the algebraic closure of {(©1,...,0,,)} over Q, and assume
T(0©) =dim X <t—1. Since, gen(d,t) < m —t, for every ¢ > 0, there are infinitely
many D € N such that for every 1 < 4, < -+ < 4,01 < m, there is a nonzero
= (i, lmy1-t) € ZF with |I| < D, hence deg x; < /mD, and

log|xi(©1,, 04, ,) — 1| < —cD".

By part one of the previous Lemma, the rank of the module N generated by these
(I1,...,lm—¢) € Z" is t. Hence, by conjecture I, there is a Zariski closed subset
X C X such that X contains X N Hy. Thus the first part of the claim follows from
Proposition 3.3. The second part of the claim is proved analogously.

2. If gen(0,t) < m, then 0 is (m,t)-special. Hence, for every ¢ > 0, there is an
infinite subset D C N such that for every D € D, thereisan | = 1ly,...,l,, such that
deg x; < /mD, and

log [xu(exp(6). - ., exp(6n)) — 1 < —eD".
Consequently,
log |xi(exp(01K;), . .., exp(Omk;)) — 1] < —deDt,

with j any natural number less or equal n, and ¢ only depending on .

Next, with © = (exp(6;K;)i<m,j<n, let X C G be the algebraic closure of {©},
and G C G™ the smallest subgroup of G™" that contains §. Then, G is isomorphic
to G, for some a € N,because the exp(6;x;) are all positive real numbers. Assume
dimX = T(0) <t < n. Since x; = H;nzl xﬁ],] =1,...,n, part 2 of the previous
Lemma implies that the codimension of H = G'N M}_; ker x; in G isn > dim X. By
conjecture I, the common zeroes of Np in X are contained in a fixed proper Zariski
closed subset X of X, and the claim follows from Proposition 3.3. If gen(6,t) < n
and m > t, the claim follows analogously



3. Let 01,...,0,, Km, ..., Ky be as in the conjecture, and n = mn/(m +n). If 0 is
(m, n)-generic and k is (n,n)-generic, then

gen(6,n)gen(k,n) mn
= =n>n—c«¢
gen(0,n) +gen(k,n)  m+n
for every e > 0, and Proposition 2.2 implies T(©) > 7 —1—e€ = == — 1 —¢, for

mn__ q

every € > 0 which in turn implies 7'(0) > ==
If 6 is (m, n)-special, it is also (m, t)-special with ¢ = [n], hence gen(#,¢) < m. Since
n > % >t part 2 implies

m—+n

> — 1.
m+n

T(@)zt:[

mn mn
m-+n

If i is (n, n)-special, T(©) > -2 — 1 follows in the same way.

PrOOF OF THEOREM II 1. For ¢t = 1, the claim coincides with conjecture 1.3 for
t = 1, and the proof of this claim did not use conjecture I.

For t = 2, let gen(f,2) < mT_Q + 1 =m — 2. Then, by Lemma 2.1.5, gen(f,1) <
gen(f,2) < m —2 < m — 1, and by the above T(04,...,0,,) > 1. Assume that
T(©1,...,0,)=1. As 0 is (m — 1,2)-special, for every constant ¢ > 0, there is an
infinite set D C N, such that for every D € D, there are I,] € Z™, with |I|,]I| < D,
and

log [x:(©1,...,0m_1) — 1| < —cD? log|xi(Os,...,0m,) — 1| < —cD?.

Since [ and [ are linearily independent, [Mau], Theérme 1.2 implies that the common
zeroes of y; and yj are contained in a fixed finite subset X of X, and the first claim
follows from proposition 3.3. The second claim is proved analogously.

Assume now t > 3, and the Theorem be true for t — 1. Let gen(6,t) < Tf_lt, and
define s := m — gen(0,t) — 1. Then,

—t
m—s—1=gen(0,t) < n-
t—1
This equation is equivalent to
s—t+1 s—(t—1)
m—s—1< —— <<= gen(0,t) < ——.

t—2 t—2

Let A be the set of (s x m)-matrices of rank s with coefficients in Q. By Lemma
2.1.5, for every A € A,

s—(t—1)

gen(A6,t —1) < gen(0,t) < ——
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The induction hypothesis implies T'(exp(A#)) > t — 1 for every A € A. Since
T(0) > T(64), we only need to derive a contradiction from the assumption that
T(©) =t—1. Assume T(0) =t — 1. Since T(04) =t — 1 for every A € A the
algebraic closure X of {©} over Q is s-regular. Hence, by Theorem 3.2, there is a
proper Zariski closed subset X that contains all s-special subvarietes of X.

Since 6 is (m — s,t)-special, because of m — s > m — s — 1 = gen(6,t), for every c
there are infinitely many D € N such that for every I = {iy,...,i,_s} C {1,...,m},
there is a nonzero l; = (I;,,...,l;, _s) such that

‘lll < D, and log ‘Xl](@b T >@nfs) - 1‘ < —cD".

By Lemma 4.1, the [; generate a submodule of rank s+ 1, and by the above he inter-
section of X with N;ker(x;, ) is contained in X. Proposition 3.3 implies T'(exp(#)) > t
in contradiction with the assumption.

Of course, the claim about x is proved in the same way.

2. If gen(0,t) > p and gen(0,t) > v, then

gen(0,t)gen(k,t) o

> 1
gen(6,t) + gen(k,t) — p+v =

hence for some € > 0,
gen(0, t)gen(k,t)

gen(f,t) + gen(k,t)
and Proposition 2.2 implies T(©) > t + ¢ — 1. Since both ¢t and 7'(©) are natural
numbers, this implies 7'(©) > ¢.
If gen(0,t) < p < #‘:_1), by Lemma 2.1.3, likewise gen(01k1,...,0,k1,t) <
#‘7;1). By part 1, T((exp(61x1), exp(0,,k1)) > t. The claim thus follows from the
trivial fact T(©) > T'((exp(b1k1), exp(bpmk1)). If gen(k,t) < v, the claim is proved
analogously.

>1+e,

A Proof of Proposition 2.2
Let © = (exp(@iﬁj))igmdgn € Gmn, and

s TOHH0 >

where k is any natural number. Of course, T'(0y,) = T/(©), for any k.
For 7 as in the Proposition, let u := gen(0,7n),v := gen(k,n), and for D € N| let

L =L(D):=[D#7], R=R(D):=[2u+1)Dw7].

Further, for I = (iy,...,4,),J = (j1,...,m,) with 1 <43 < --- <4, < m, and
1< < <iy, <n,let

. mk k
pr: Gt = Grp = GhY, (Zia)icma<k = (Ziya)a<ma<hs
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. nk vk
Gy = G =Gyl (2)j<nb<k = (2b) p<vb<hs

which induce maps of coordinate rings
pr Zl(Gu)ia] = ZIGR],  pl: Z{(Gn)ga] — ZIGH™],

For R € Nlet Bg := {r € My(N)|rj,o < R, Vp=1,...,p,a = 1,...,k} be
the matrices indexed by J = (j1,...,J,) and 1,...,k with entries in the natural
numbers less or equal to R. For r € By, and a € {1,...,k} define

14
. mymnk Tjpa
Myt Gp™ = Gr 2 Gl,,  (2iaj)i<m,a<k,j<n (H ZiAij> ;
A<

p=1 <u

14
. mymnk k Tjpa
my: G = Gre £ GLY, (2iaj)i<m,j<na<k — <H Ziwjp> ;
p=1 A<p,a<k

with corresponding coordinate maps
me,  Z[Gr) = Z[G™],  mi: Z[Gry] — Z[GR.
We have
degmy (f) < max |rjoldegf, degmi(g) <  max — |rj[degg, (1)

and
log [my.,(f)] <log|f|, log|m;(g)| <log]|gl, (2)

for all f € Z[Gy], g € Z[Gr4).
Finally, for z = (2i4;)ia; € G, a < k, and R € N, define

ZR,a(z) = {mr,a(z)| re BR} - GI(C)7 a = 17 ) k’,

Yr(z) :={m,(z)| r € Br} = Xr1(z) X --- X Brx(z) C Grx(C).

A.1 Propostion For G =G™, and > C G(C) a finite subset, define

Y=%d)={oy---o4lo;€0,i=1,...,d},

and assume there is a polynomial f € Clzy,. .., zy] of degree at most L that vanishes
on every point of X. Then there is a proper subgroup H C G such that

card(SH/H)Hu(L) < He(L),

where Hy, Hg are the Hilbert functions of H and G. Moreover H can be chosen as
the subgroup given by an equation [ ;" , zh =1 where |l;| < L for everyi=1,...,m.

12



PROOF In [LNM 1752], ch. 11, Theorem 4.1 take T' = 0.

A.2 Lemma Forl € N, and X a finite subset of C' define
w(X) := min{deg P|P € Clz1,...,2],P #0,P(c) =0Vo € ¥.}
Then, for ¥4,...,% finite subsets of CH,

WXy X o x X)) = 1I§nal£kw(2“)'

Proor [LNM 1752], ch. 14, Proposition 3.3.

A.3 Lemma For n > 1 assume (0,k) is (v,p,n)-reqular, and z = (%iq;)iaj =
(Za)a<k € G™*(C) is any point. For every sufficiently big D, there are subsets
I = {ir,...;0.y < {l,....,n} and J = {j,...,1,} C {1,...,m} such that the
existence of a polynomial f € Z[(G);] with deg f < L(D) that is zero on every point
of E[@](z), implies log |O, z| > —D", where |Oy, z| is the distance of Oy, to z,

and the implied constant depends only on m,n,k and ©.

PRrROOF Let (Iy)y € Z*\ {0}, (r,), € Z"\ {0}, I C {1,...,m}, J C{1,...,n}, and
a < k. Then,

woov Lo I v

[T, - T - o (S ) (S ) )
A=1p=1 A=1p=1 A=1 p=1

If |Iy| < L,VA, and |r,| < R,Vp, since L = L(D), R = R(D) — oo when D — o0,

the (v, u, n)-regularity of © implies that for any sufficiently big D there are I, J such

that for all (1)), € Z* \ {0}, (r,), € Z" \ {0} with || < L,V and |r,| < R,Vp, the

inequality

o v ] v
log | [T TT@02m — 1] > 10g |3 18, [ |Y rpm, | +log2 >
A=1 p:l A=1 p:l
L"— R"> —(2k(m +n)D)" > —D" (3)

holds, again because of exp(0) = exp’(0) = 1. (Strictly speaking the inequality holds
only if the argument of the exponential is sufficiently close to 0, but these are the
only arguments we are concerned with.)

Assume now that there is an f € Z[(G) ] with deg f < L that is zero at every point
of E[ ](z) By Lemma A.2, there is an a < k and an f € Z[(G);] with deg f < L

R
2p
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that is zero at every point at E[ &

,(z). By Propostion A.1 there is a subgroup H
2
of GG; such that '

)

Card((Xr1,(2)H)/H)Hu(L) < He, (L),

R
2up

Morover, H can be chosen to be defined by an equation

NG

I
[[za=1 with || <L, A=1... p3x:0#0.
A=1

As G[ = GH

m)

we have Hg, (L) = L*, hence Card((E[i]’a(z)H)/H) < LF. As

because of ﬁ > n > 1, for sufficiently big D,

v

R u
> [Du+v ]V = L*,

2

Card(Z[i]ya(z)) = [

2p

this implies that there are two different points o, € E[ 2] ,(z) such that o6~ € H.
2 b
With o = m,..(z),5 = mz4(z), we have o5+

TIIT-40 " =1 4)

A=1p=1

=M, 4(2) - m_54(2z), hence

Since o # &, there is an a and a p such that r; , # 7,4, and since 0,0 € Z[i] .(2),
2un ]’

the inequalty |rj,q — 7j,q4| < % holds, for every p=1,...,v.

Assume log |0y, z| < —cD" with some arbitrarily big constant c. Since the imaginary
part of (O)is; is zero for every i,a, j, this implies that there are x;,; € C,i =
L,...omya=1,...,k j=1,...,nsuch that z;,,; = exp(z;,;) and

log [im @;4j| < —c¢D"+1log2, Vi=1,....m,a=1,...,k, j=1,...,n,
consequently because of n > 1, for D sufficiently big
Klog|im 5] < —¢D" +1log2, Vi=1,....m,a=1,....k, j=1,...,n,

for every number K < 2uvLR. Thus, because of (4),

nov N
os [T TT@020 ™ 1) =
A=1p=1
H v 3 . ( o ) 1 v )
IOg H H(Qk)iiag‘]:a el H H exp(xiwjpyx(rjpa—rjpa) S
A=1p=1 A=1p=1
I v i ,
log Z Z l/\(rjpa o fjﬂa)(ei/\ Kjp — Re Xixajp) + Z Z l)\(rjpa - fjpa)im Liaj <
A=1 p=1 pu iyt
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max(log(2uvLR) + log |Oy, z|, —¢' D" + log 2) + log 2,
which by assumption is less or equal, which for sufficiently big D is less or equal
—C//Dn,

where ¢’ is a constant depending only on m,n,k, and® times the arbitrarily big
chosen constant ¢, which because of n > 1 for D > 0 contradicts (3).

To proof the proposition, a series of auxiliary polynomials fulfilling the conditions

in Proposition 1.7 will be construed. The main tool for this is following Lemma.

A.4 Lemma For r < 0 and an holomorphic function ¢ : Ck — C let

ol = sup o(2).

|zi| <rji=1,...k

Let further M € N, and A,U be positive real numbers. If (8U)L < MA and
A < U, then for any holomorphic functions ¢y, ..., o : CF — C with

M
Z ’(pl|er S eXp(U>7
=1

there are numbers hy, ... hy € Z with log|h| < A)l = 1,...M such that the
function ¢ = Zl]\il hipn satisfies log o, < =U.

PROOF [Wal]
For X = (@i,a)a<pj<k, and Ay the set of multidegrees d = (dq)r<pa<r denote

|d| = ﬁzl ZIZZI dm, and let
|d| < L}

Ap = {Xd = H xf:;
A<u,a<k

be the monomials of degree at most L in Z[G™¥], that lie in the image of p} :

Z|G1 1] — Z|G™*]. Further,

ig . (Ck — sz(C), (Zl, ey Zk) — (exp(@izj))igm,jgk,

and for X% € Ap,
s C* = C, z+— (X% 0ig)(z).

Further, put

_ pk =]
k=1 S L N p<ip and U= MAT
uk (uk)! 8

15
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As (8U)*1 = MA, A < U, and for all d € Ay, the inequalities

sup klog <Z !wd((za)agm) +log M <

|zo|<eRvk|k|, a=1,..., dEA,
sup > dralog |6;, za| +log |AL| +log M <
|zq|<eRvk|k|, a=1,....k A< ma<k
eLRmnk|0||k| + 2log M < (mnk(2u+ 1)|0||x| +1)D < U

hold. The last two inequalities are valid for sufficiently big D because of LR <
(2u+1)D, and log M < L < D for big D. The Lemma above thus implies that for
every X4 € Ay there is an hy € Z with log|hg| < A such that ¢ = > dea, hapa =
D deA, ha(X4 0 ig) fulfills

MA)mT 1 ok
sup logle| < —U = _(WMA)Er < ——1Dmki1’ (5)
|(za)a<k|<Rvk|x] 8 8((uk)!) 1

where L = [D#+] was used. Define f = > gea, X% so that o = f oy,
Since for r € By, with r’ the transpose of r, the inequality

v
Irik| = (Z ija/ijp> < kvR|K|
p=1 a

<k

holds, by (5)

log |(mf)(Ox)| = log | f(m.(Ox))| = log | F((Or)iln Iacpash)| =

log | f((0iyk5,) """ )r<pa<k)| = 10g | (Z ﬂpa’%) =
a<k

p=1

_k_
E+1

log [p(r'k)| < —co (Dﬁ> ,

for all r € Bpg.
By the assumption on 7

p_ _gen(0mjgen(rm)
p+v gen(d,n) +gen(k,n) = "
_k
Thus, for a sufficiently big k, also (;’%) s n

Hence for an arbitrarily small € > 0 and a sufficiently big D,
k.
log | (m; £)(64)| < —cz (D)™ < e, D" < —eD". (6)
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for all R € Bg, and every ¢ > 0.
Assume that there is a point z € G™*(C) such that

f(m(2)) = ((m2f)(2) =0,
for all » € Bg. Then, by Lemma 2.1.6 © is (u, v, n)-regular, and Lemma A.3 implies
log |Oy, 2| > —3D",
hence for a sufficiently big D,
log |y, 2| > —eD"".

Thus, the distance of Oy, to any common zero of the set {m, f|r € Bg} is at least
—cD"~¢. Because of (6), to apply Proposition 1.7, it only remains to check the upper
bounds on the degree and length of the m}f. By construction deg f < L,log|f| <
LR. Hence, by (1),

degm;f <L max 7;,<LR<(2u+1)D,
p = a

1yesva=1,...,

and by (2)
log|m!f| < LR <d(2u+1)D.

As all conditions of Proposition 1.7 are fulfilled, T(6) > n — e — 1 follows. Since
T(Oyg) is integral, for a sufficiently small €, this implies 7'(©y) > n — 1, hence

T(©)=T(0) >n—1.

References

[Ha] P. Habegger: On the bounded height conjecture. International Mathematics
Research Notices, Volume 2009, Issue 5, 2009, Pages 860—886,

[LNM 1752] Introduction to algebraic independence theory. Springer Lecture Notes
1752

[Ma] H. Massold: Intersections of subvarietes of G}, with algebraic subgroups. To
appear

[Mau] G. Maurin: Courbes algébrique et équations multiplicatives. Mathematische
Annalen, Volume 341, pages 789-824, (2008)

[Ph]  P. Phillippon: Criteres pour I'indépendance algébriques, Inst. hautes études
sci. publ. mathématiques 64 (1986), 5-52

[Wal] M. Waldschmidt: Transcendance et exponentielles en plusieurs variables,
Invent. Math. 63/1, (1981), 97-127

17



